跳转至

Chapter 6 Counting(计数)

小学奥数?

The Basics of Counting(计数基础)

  • Product Rule(乘法原理): If there are n1n_1 ways to do the first task and n2n_2 ways to do the second task, then there are n1×n2n_1 \times n_2 ways to do both tasks.

  • Sum Rule(加法原理): If there are n1n_1 ways to do the first task and n2n_2 ways to do the second task, and the tasks cannot be done at the same time, then there are n1+n2n_1 + n_2 ways to do one of the tasks.

  • The Sum Rule for Counting(求和法则): If a set SS is the union of kk disjoint subsets S1,S2,,SkS_1, S_2, \cdots, S_k, then S=S1+S2++Sk|S| = |S_1| + |S_2| + \cdots + |S_k|.

  • Subtraction Rule(减法原理): If there are n1n_1 ways to do a task and n2n_2 other ways to do the task, then there are n1+n2n_1 + n_2 minus the number of ways that are duplicated. (实则就是容斥原理)

  • Division Rule(除法原则): There are n/d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to way w.

The Pigeonhole Principle(鸽巢原理)

即抽屉原理

  • The Pigeonhole Principle(鸽巢原理): If kk is a positive integer and k+1k+1 or more objects are placed into kk boxes, then there is at least one box containing two or more of the objects.

  • Generalized Pigeonhole Principle(广义鸽巢原理): If NN objects are placed into kk boxes, then there is at least one box containing at least N/k\lceil N/k \rceil objects.

    • proof: by contraposition, if all boxes contain less than N/k\lceil N/k \rceil objects, then the total number of objects is less than k×N/k=Nk \times \lceil N/k \rceil = N, which is a contradiction.
Eg

在用鸽巢原理证明时,最关键的是要找到一个合适的“盒子”和“鸽子”的对应关系。例如下面的例子:

Permutations and Combinations(排列与组合)

  • Permutation(排列): An arrangement of rr objects from a set of nn objects is called a permutation of nn objects taken rr at a time. The number of permutations of nn objects taken rr at a time is denoted by P(n,r)P(n, r)
P(n,r)=n×(n1)××(nr+1)=n!(nr)!P(n, r) = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}
  • Combination(组合): An arrangement of rr objects from a set of nn objects, where the order of the objects does not matter, is called a combination of nn objects taken rr at a time. The number of combinations of nn objects taken rr at a time is denoted by C(n,r)C(n, r).
C(n,r)=P(n,r)r!=n!r!(nr)!C(n, r) = \frac{P(n, r)}{r!} = \frac{n!}{r!(n-r)!}
  • C(n,r)=C(n,nr)C(n, r) = C(n, n-r)
  • C(n,r)=C(n1,r)+C(n1,r1)C(n, r) = C(n-1, r) + C(n-1, r-1)

剩下的希望能请神请到高三的自己

Binomial Coefficients(二项式系数)

  • Binomial Theorem(二项式定理): For any positive integer nn and any real numbers xx and yy, (x+y)n=k=0nC(n,k)×xnk×yk(x+y)^n = \sum_{k=0}^{n} C(n, k) \times x^{n-k} \times y^k
  • Binomial Coefficients(二项式系数): C(n,k)C(n, k) is the coefficient of xnk×ykx^{n-k} \times y^k in the expansion of (x+y)n(x+y)^n,also denoted by (nk)\binom{n}{k}.
  • Corollary(推论1): k=0nC(n,k)=2n\sum_{k=0}^{n} C(n, k) = 2^n
  • Corollary(推论2): k=0n(1)k×C(n,k)=0\sum_{k=0}^{n} (-1)^k \times C(n, k) = 0
    • proof: (11)n=k=0nC(n,k)×1nk×(1)k=k=0n(1)k×C(n,k)(1-1)^n = \sum_{k=0}^{n} C(n, k) \times 1^{n-k} \times (-1)^k = \sum_{k=0}^{n} (-1)^k \times C(n, k)
  • Corollary(推论3): k=0n2k×C(n,k)=3n\sum_{k=0}^{n} 2^k \times C(n, k) = 3^n

    • proof: (1+2)n=k=0nC(n,k)×1nk×2k=k=0n2k×C(n,k)(1+2)^n = \sum_{k=0}^{n} C(n, k) \times 1^{n-k} \times 2^k = \sum_{k=0}^{n} 2^k \times C(n, k)
  • Pascal's Identity(帕斯卡恒等式): C(n,k)=C(n1,k)+C(n1,k1)C(n, k) = C(n-1, k) + C(n-1, k-1)

    • proof: (x+y)n=k=0nC(n,k)×xnkyk=k=0nC(n1,k)×xnkyk+k=0nC(n1,k1)×xnkyk(x+y)^n = \sum_{k=0}^{n} C(n, k) \times x^{n-k} y^k = \sum_{k=0}^{n} C(n-1, k) \times x^{n-k} y^k + \sum_{k=0}^{n} C(n-1, k-1) \times x^{n-k} y^k

其实就是杨辉三角。

  • Vandermonde's Identity(范德蒙恒等式): C(m+n,r)=k=0rC(m,rk)×C(n,k)C(m+n, r) = \sum_{k=0}^{r} C(m, r-k) \times C(n, k)
Proof
(x+y)m+n=(x+y)m×(x+y)n=k=0mC(m,k)×xmk×yk×j=0nC(n,j)×xnj×yj=r=0m+nk=0rC(m,k)×C(n,rk)×xm+nr×yr \begin{aligned} (x+y)^{m+n} &= (x+y)^m \times (x+y)^n \\ &= \sum_{k=0}^{m} C(m, k) \times x^{m-k} \times y^k \times \sum_{j=0}^{n} C(n, j) \times x^{n-j} \times y^j \\ &= \sum_{r=0}^{m+n} \sum_{k=0}^{r} C(m, k) \times C(n, r-k) \times x^{m+n-r} \times y^r \end{aligned}

也可以理解为从分别有m和n个元素的集合A和B中选r个元素.

  • Corollary(推论): C(2n,n)=k=0nC(n,k)2C(2n, n) = \sum_{k=0}^{n} C(n, k)^2
    • proof: C(2n,n)=k=0nC(n,k)×C(n,nk)=k=0nC(n,k)2C(2n, n) = \sum_{k=0}^{n} C(n, k) \times C(n, n-k) = \sum_{k=0}^{n} C(n, k)^2
  • Corollary(推论): C(n+1,k+1)=j=0nC(j,k)C(n+1, k+1) = \sum_{j=0}^{n} C(j, k)
    • proof: C(n+1,k+1)=C(n,k)+C(n,k+1)=C(n,k)+C(n1,k)+C(n1,k+1)==j=0nC(j,k)C(n+1, k+1) = C(n, k) + C(n, k+1) = C(n, k) + C(n-1, k) + C(n-1, k+1) = \cdots = \sum_{j=0}^{n} C(j, k)

Generalized Permutations and Combinations(广义排列与组合)

  • Permutations with Repetition(重复排列)

    The number of permutations of nn objects taken rr at a time with repetition allowed is nrn^r.

  • Combinations with Repetition(重复组合)

    The number of combinations of nn objects taken rr at a time with repetition allowed is C(n+r1,r)C(n+r-1, r)

    高中的“隔板法”:n个物体放进r个盒子,允许为空。

  • Permutations with Indistinguishable Objects(相同物体的排列)

    The number of permutations of nn objects taken rr at a time, where there are n1n_1 indistinguishable objects of type 1, n2n_2 indistinguishable objects of type 2, ..., and nkn_k indistinguishable objects of type k, is C(n,n1,n2,,nk)=n!n1!n2!nk!C(n, n_1, n_2, \cdots, n_k) = \frac{n!}{n_1!n_2!\cdots n_k!}.

  • Distributing Objects into Boxes(将物体分配到盒子中)

    高中“隔板法”plus

    • Distinguishable Objects and Distinguishable Boxes(可区分的物体和盒子)

      nn objects into kk boxes: n!n1!n2!nk!\frac{n!}{n_1!n_2!\cdots n_k!}

    • Indistinguishable Objects and Distinguishable Boxes(不可区分的物体和可区分的盒子)

      并没有闭公式,要分类讨论; 但是有求和公式:

      n个物体放进k个盒子,每个盒子至少有一个物体的方案数为: j=0kS(n,j)\sum_{j=0}^{k} S(n, j)

      Stirling numbers of the second kind

      将n元集合写成k个非空disjoint的方法数,详见这里

    • Indistinguishable Objects and Indistinguishable Boxes(不可区分的物体和盒子)

      只能枚举了貌似

Generating Permutations and Combinations(生成排列与组合)

Generating Permutations(生成排列)

  • Lexicographic Order(字典序): A permutation of a set of objects is said to be in lexicographic order if for some k, a1=b1,a2=b2,,ak1=bk1a_1 = b_1, a_2 = b_2, \cdots, a_{k-1} = b_{k-1} and ak<bka_k < b_k.例如:123<132<213<231<312<321123 < 132 < 213 < 231 < 312 < 321

Generating Combinations(生成组合)

  • To generate all combinations of the elements of a finite set which has nn elements:

    • Use a binary bit string to represent a combination of the set.
    • The bit string has nn bits, and the iith bit is 1 if the iith element is in the combination, and 0 otherwise.
  • To generate all r-combinations of the elements of a finite set which has nn elements:

    • Find the last element in the combination that cannot be increased.
    • Replace the next element,etc.

最后更新: 2024年5月10日 02:41:31
创建日期: 2024年4月16日 01:44:06